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Outline of Talk

® Motivation:

+ What happens if a DSGE model is not identified?
e |iterature:

+ My contribution
® Model and structure setup:

* Assumptions and robust Bayes
® Proposed algorithm:

+ Specific steps
® Theoretical results:

+ Finite sample and asymptotic properties
e Simulation and application:

+ Policy implications from estimation results
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Motivation

e DSGE models are widely used:

+ U.S. Fed, Banque de France, Sveriges Riksbank, IMF etc.
+ They are taught in almost every Econ Ph.D. program.
¢ Analysis of the models is challenging because of ‘identification’:
+ DSGE models are micro-founded, rich with parameters.
+ Multiple parameter vectors may yield the same data generating process.

+ Standard Bayesian methods can be sensitive to prior choices.
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Motivation - Estimation

A monetary policy model (Cochrane 2011, JPE). In its AR(1) form

1
¢7r*ﬂ€t7 ¢ﬂ'>17|p|<1761NN(0a0—§)

Tt = pTt—1 +

parameter vector (¢, o, p), Taylor rule parameter ¢, monetary policy

disturbance coefficient p, its standard error o.. Inflation rate =; is observed.
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Motivation - Estimation

Table: Prior and Posterior Distribution of Structural Parameters

True value Prior distribution Posterior distribution

Distr. Mean St. Dev. Mode

Mean 5 percent 95 percent
[ 1 Uniform 4 2.02 5.82 4.43 1.95 6.77
br 1.8 Uniform 1.73 6.49 4.91 2.78 7.00
p 0.8 Uniform  0.75 0.09 0.82 0.81 0.74 0.87
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Motivation - Impulse Response

Figure: Impulse Responses from Standard Bayesian Estimation

5 Impulse Response of m with prior 1 3 Impulse Response of 7 with prior 2
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* The impulse response IR (t, s, 1) here denotes the effect of an one-unit

shock at time t on 75

® Prior 1 and prior 2 induce the same distribution over (p, ;22)
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Motivation - Policy Analysis
Suppose a central bank using the following small-sized DSGE model
1.
Ve =Et [Vi1] — p (it — Bt [me41]) + 9t — Et [Gr41]
m = BEt [mea] + K (Ve — 9) + U

it = prit—1 + (1 — pr) Yame + (1 — pr) ¥y (Yt — 9t) + €R,t

Ut = pult—1 +eut, gt = pggi—1 + Eg,t-

is trying to use the estimated parameter (history)

(0, B, K ¥r, Yy, PR, Pg, Pu, OR, 0g, ou), t0 choose a policy rule (v, ;) for
it = rm+ 9y, (v — 9r)

that minimize expected welfare loss in the form of Ax2 + y? in the future.
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Motivation - Policy Analysis

* Now consider two policies (¢, %y,) = (1.5,0), and (1.5,0.125)

Table: Policy Comparison under Different Distributions and Weights

A=1 A=3 A=10

(Y, y) post1 post2 post1 post2 posti1 post2

(1.5, 0) v v v
(15,0.125) v v v

® Policy choices are sensitive to prior choices as well.
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Research Question

® Given a DSGE model and observed data.

+ Sensitivity analysis: How much can the posterior mean change as | change
the prior (asymptotically)?

+ Policy implications: Is it always possible to support a single policy rule robust
of priors? If not, what is that range of policies?
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Literature and Contributions

¢ |dentification in DSGE models: Canova and Sala (2009), Iskrev (2010),
Komunjer and Ng (2011), Qu and Tkachenko (2012), Qu and Tkachenko (2017),
Kociecki and Kolasa (2018), Kociecki and Kolasa (2021)

* Robust Bayesian analysis: Berger et al. (1994), Berger, Insua, and
Ruggeri (2000), Gustafson (2015), Liao and Simoni (2019), Giacomini and
Kitagawa (2021), Ke, Montiel Olea, and Nesbit (2022), Giacomini, Kitagawa, and
Read (2022)

¢ Sensitivity/weak identification in DSGE: Muller (2012), Guerron-Quintana,
Inoue, and Kilian (2013), Andrews and Mikusheva (2015), Ho (2022)
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Literature and Contributions

* Frequentist inference for set-identified models: Horowitz and
Manski (2000), Manski (2003), Imbens and Manski (2004), Chernozhukov, Hong,
and Tamer (2007), Stoye (2009), Romano and Shaikh (2010), Kaido, Molinari,
and Stoye (2019)

e Bayesian inference for set-identified models: Baumeister and
Hamilton (2015), Kline and Tamer (2016), Chen, Christensen, and Tamer (2018)

¢ My contribution:

® A new robust Bayesian algorithm applied to DSGE models with theory.

® | work on “global” identification rather than identification at certain point
(KK21).

® | study DSGE model, which has further complications (GK21).
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Setup

Assumption

Linearized DSGE model with Gaussian shocks.
® Linear state-space representation

Assumption

Solution to the linear rational expectation model (LRM) is unique, i.e., no

indeterminacy.

¢ Coefficients of the state-space model are uniquely determined.

Assumption

Deep parameters enter LRM in an algebraic expression way.

e e.g., NKPC in Gali (2015): 7 = BE; {mes1} + A (a + %) 2
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Estimate a Linearized DSGE model

Standard precedure

S 1. Summarize a macro model with equilibrium conditions, measurement

equations, etc.

S 2. Log-linearization the equations around steady state, represent the model
by a linear rational expectation model (LRM) with deep parameters 6.

S S
Fo(6) P’ =T(O)E | ~

t P1+1

+ T2(0)St—1 + T3(0)er

S; state variables, P; policy variables.
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Application

Estimate a Linearized DSGE model

Standard precedure

Solve the LRM, combine with measurement equations and attain a

state-space representation.

St = A(0)Si—1 + B(0)et
Y: = C(0)St—1 + D(0)e:

Use a generic filter to compute the likelihood p(y | 8) through the

state-space model.

Start from a prior distribtuion 7y, update by MCMC methods using the

likelihood and obtain the posterior distribution of 8, 7y,
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Definitions

Definition (OE)
Parameter @ is observationally equivalent to ¢ if they have the same likelihood

p(y | 0) for all data realization y.

® A property independent of data

Definition (ldentification)

0 is identified if it has no observationally equivalent parameters.

e Define the equivalence mapping K : © — 2°, thatis, p(y | 6) = p(y | 9)
for all y, if and only if K(8) = K(9).
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Algorithm

S.1 Run standard Bayesian estimation, get posterior draws of 6 from a given
prior 7.

S.2* Optimize over the observationally equivalent set of parameters of this
draw, find the lower and upper bounds of parameters of interest.

® Finding the OE set of a given parameter involves solving a polynomial
system.

S.3 Average the lower/upper bounds for means and quantiles.

* Remark: When the model is identified at all draws, the proposed

algorithm gives the same result as the standard Bayesian method.
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Comparison with Giacomini and Kitagawa (2021)

* |In GK21, the SVAR model

P
AYi=a+» AYijt+efort=1,.T
j=1

have explicit reduced-form parameters.

* What they did: prior over reduced-form — structural parameters.

* |In GK21, the mapping between structural parameters and reduced-form

coefficients is analytically tractable.
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OE characterization

Assumptions

Define N = APC’' + Bx.D', where P = E(5:S}),

Assumption (Stability)

Forevery 6 € © and for any z € C, det(zl,; — A) = 0 implies | z |< 1.

Assumption (Stochastic Minimality)

For every 6 € ©, matrices O have full column rank and C have full row rank,
i.e. rank(O) = rank(C) = ns. Where O = (C' A'C' ... A"s~'(C),
C=(N AN ... A's7'N).
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OE characterization

Goal:
equivalence
LRM (1) - - LRM (62)
solution solution
similarity
transformation

state space (61) < > (state space (6.)
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OE characterization

Theorem (KK21)

Let stability and stochastic minimality assumptions hold. Then 6 ~ 0 if and

only if
1)A=TAT ',
2)C=CT ',

3)AQA - Q=T 'BEB'T ' - BB,

4) CQC' = DED' - Dx D,

5 AQC' =T 'BED - BxD/,

for some nonsingular n. x n. matrix T and symmetric n. x n. matrix Q. In

addition, if @ ~ 0 then both T and Q are unique.
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OE characterization
Brief

e In order to use KK21, given a parameter 6, we need to link it to the

solutions.

e Attain the solution, S; = A(0)S;_1 + B(0)er and P, = F(0)S;_1 + G(0)et,
plug in LRM, equate coefficients on both sides in terms of S;_+, and ;.

FA+THF —T5(AY —TPFA =T
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OE characterization
Brief

Therefore, we can solve for all observationally equivalent s following the

procedure

S.1 Given 6, solve for state-space coefficients.

S.2 Characterize § by KK21 and the previous two equations, unknowns

include (not limit to) 6.

S.3 Reduce a polynomial system to its reduced Grobner basis.
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Additional Assumptions

Assumption (Measurability)
The equivalence mapping K is measurable.
Assumption (Continuity)

(1) K is a continuous correspondence at 6,.

(2) Parameters of interestn : © — R" s continuous.

Assumption (Regularity)

Let the prior of deep parameters 0, wy, be absolutely continuous with respect

to a o-finite measure on (©, A), and 7s(©) = 1.
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Multiple priors

Define the class of all priors that the marginal distribution for K coincides

with the given mg, i.e.,
MNo(mk) = {mo : o ({60 : K(0) € B}) = nx(B), for B € B(F)}

The class of priors have the same push-forward measure mx (by

definition).

The class of priors induce the same prior predictive distribution
p(y) = [ p(y | 0)dms.

This class can be uniquely pinned down either by 7x or any element 7y

in it.
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Robust Distributions

Theorem (Posterior Mean)

For a given g, let measurability and regularity assumptions hold, that is,
given a prior g absolutely continuous with respect to a o-finite measure, we
have a push-forward measure wx of m¢ under K that is also absolutely

continuous. Define

3

7°(0) = su 0, n (@)= inf n(®
(9) gleKtzg)n( ), n"(9) G,GK(B)U( )

Then, the set of posterior means is characterized by

sup  Egjy [n(0)] = Egyv [77(0)], inf  Egy [n(0)] = Egpy [n7(0)]

oy EMgy molyE€Mg|y

where Mgy collects the posteriors of Ny (k) for a given ni.
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Robust Distributions

Theorem (Consistency)

Let, in addition continuity assumption hold, assume further that induced prior
7k leads to a consistent posterior, and © c RP, H ¢ RY for some p, q < co
are compact spaces. Then the Hausdorff distance between the set of
posterior means and the convex hull of true identified set goes to zero almost

surely as T increases, i.e.,

Tim. dH<Eeyr( ' (0). 7)), [n*wom*(oo)]) =0, p(Y™|6)-as.
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Example 1: Cochrane Model

Consider the full model

Xt = pXe—1 + €, |p| <1,er ~ N(0,0¢)
it =r+ Eymigq

if:r+¢7rﬂ—i+xh ¢7r>1

Deep parameters are 0 = (p, ¢, 0.). The solution is equivalent to a AR(1)

setting
et ~ N(0, 0?)

Tt = pTi—1 + €t,
O —p

with reduced form parameters ¢ = (p, =2=), (¢, o¢) not jointly identifiable.

br—p

The impulse response function is also not identified.

27/35



Application
0@0000000

Example 1: Inference

Table: Estimated Identified Set

True value Identified set Range of posterior mean

Oe 1 (0.2, 0) (0.21,00)
o 1.8 (1,00) (1.00, o0)
p 0.8 0.8 0.80

® Estimation of range of posterior means approximates the identified set

well.
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Example 1: Inference

Impulse Response of = with prior 1 g Impulse Response of = with prior 2
-0.5 -0.5
=i -1
15 -15

True IR True IR
-2 Posterior mean 2 ——— Posterior mean

[C190% Bayesian Interval [C190% Bayesian Interval

25 -25

Impulse Response of =

0 ' r : e -~

e

IS
T
P —
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Example 1: Inference

Impulse Response of = with prior 1 o Impulse Response of 7 with prior 2

15
True IR True IR
2 Posterior mean Posterior mean
[C190% Bayesian Interval 1 90% Bayesian Interval
25
0

4
True IR _
6 Identified set of IR _
Range of Posterior Mean IR _
" L L L L L L I I I
0 2 4 6 8 10 12 14 16 18 20
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Example 1: Inference

Impulse Response of = with prior 1 & Impulse Response of 7 with prior 2
-0.5 -0.5
.| =1
-1.5
True IR _ True IR _
-2 Posterior mean —— Posterior mean
[C190% Bayesian Interval [190% Bayesian Interval
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Example 2: An and Shorfheide (2007)

1.
Vi = Et [Yrs1] — p (it — Et [me1] + Et [Ze01]) + 9t — Et [Gr41]
it = BE¢ [Ter1] + 5 (Ve — 9t)
it = pRit—1 + (1 — pr) Yt + (1 — pr) Yy (Yt — Ot) + €Rt

Zt = pzZt—1 T €zt, Gt = Pggi—1 + Eg,t-

® (Y, 1y, pr,oR) are not identified.

¢ All the shocks, either has no effect on =; or y;:, or affect =; and y; in the

same direction.
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Example 2: A Cost-push Shock Model

To generate meaningful trade-off between output gap and inflation,

1.
Ve =Et [Vi1] — p (it — Et [me44]) + gt — Et [Gi41]
7t = BBt [re] + £ (Ve — gt) + U
it = pri—1 + (1 = pR) Yxme + (1 — pr) Yy (Ve — G1) +€Rt

Ut = pult—1 +eut, gt = pggt—1 + €gt-

® Positive cost-push shock u — y |, 7 1

® Positive monetary policy shockeg — y |, 7 |

Application
000000000
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Example 2: Policy

Table: Policy Comparison under Different Distributions and Weights

A=1 A=3 A=10

(Y, y) post1 post2 post1l post2 post1 post2

(1.5,0) v v v
(15,0.125) v v v
A5 v v
(5,0) v v v v

¢ Policy choices can be robust to prior choices.

34/35



Application
00000000@

Conclusion

In this paper, | attack the following problems:

e Estimation results of set-identified DSGE models are sensitive to choice
of priors (Identification)

+ Use a robust Bayesian algorithm, | can pick any ‘reasonable’ prior and obtain
robust results.

+ | also prove it asymptotically finds the frequentist identified set.

® Researchers are silent about non-identified DSGE models (Inference)

+ The collection of posterior means of parameters of interest is given.

+ One may still have nontrivial conclusions even when the model suffers

identification problems.
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Likelihood when T=1000,000

log likelihood

=D
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S
=
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Figure: Likelihood function while fix p = 0.8

® Flat ridge along the 0. = ¢ — 0.8 line

35/35



More
o1 1)

Prior Sensitivity

3 [

prior 03
= posterior

0.2

0.1

0 2 4 6 8 0 - 4 6 8 0.6 0.7 0.8 0.9

Figure: Cochrane model prior/posterior distribution with uniform priors

® The posterior of o. and ¢, are extremely informative even if only ¢:j0‘8
is identified.
® Reason? Joint likelihood density more concentrated on areas with

higher values of ¢, and o-..

® Back to
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Grobner Basis

A reduced Grdbner basis is a set of multivariate polynomials enjoying certain
properties that allow simple algorithmic solutions. For example, the

equations:

X —2xy, x*—2y®+x.
has a reduced Grébner basis

2 2 X
X, Xy, Yy 5

® Any zero of a Grébner basis is also a zero of the original system.

* Reduced Grobner bases are unique for any given set of polynomials and

any monomial ordering.
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