Robust Bayesian Estimation and Inference for Dynamic Stochastic General Equilibrium Models

Yizhou Kuang[†]

[†]Department of Economics, Cornell University

Last updated: January 12th, 2023

Outline of Talk

- Motivation:
 - * What happens if a DSGE model is not identified?
- Literature:
 - My contribution
- Model and structure setup:
 - Assumptions and robust Bayes
- Proposed algorithm:
 - * Specific steps
- Theoretical results:
 - * Finite sample and asymptotic properties
- Simulation and application:
 - * Policy implications from estimation results

Motivation

DSGE models are widely used:

- * U.S. Fed, Banque de France, Sveriges Riksbank, IMF etc.
- * They are taught in almost every Econ Ph.D. program.

Analysis of the models is challenging because of 'identification':

- * DSGE models are micro-founded, rich with parameters.
- * Multiple parameter vectors may yield the same data generating process.
- * Standard Bayesian methods can be sensitive to prior choices.

Motivation - Estimation

A monetary policy model (Cochrane 2011, JPE). In its AR(1) form

$$\pi_t =
ho \pi_{t-1} + rac{1}{\phi_\pi -
ho} \epsilon_t, \quad \phi_\pi > 1, |
ho| < 1, \epsilon_t \sim N(0, \sigma_\epsilon^2)$$

parameter vector $(\phi_{\pi}, \sigma_{\epsilon}, \rho)$, Taylor rule parameter ϕ_{π} , monetary policy disturbance coefficient ρ , its standard error σ_{ϵ} . Inflation rate π_t is observed.

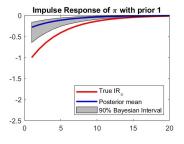
Motivation - Estimation

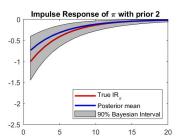
Table: Prior and Posterior Distribution of Structural Parameters

	True value	Pric	r distribu	ıtion	Posterior distribution			
		Distr.	Mean	St. Dev.	Mode	Mean	5 percent	95 percent
σ_{ϵ}	1	Uniform	4	2.02	5.82	4.43	1.95	6.77
ϕ_{π}	1.8	Uniform	4	1.73	6.49	4.91	2.78	7.00
ρ	0.8	Uniform	0.75	0.09	0.82	0.81	0.74	0.87

Motivation - Impulse Response

Figure: Impulse Responses from Standard Bayesian Estimation





- The impulse response $IR_{\pi}(t, s, 1)$ here denotes the effect of an one-unit shock at time t on π_{t+s}
- Prior 1 and prior 2 induce the same distribution over $(\rho, \frac{\sigma_e}{\phi_\pi \rho})$

Motivation - Policy Analysis

Suppose a central bank using the following small-sized DSGE model

$$y_{t} = \mathbb{E}_{t} [y_{t+1}] - \frac{1}{\sigma} (i_{t} - \mathbb{E}_{t} [\pi_{t+1}]) + g_{t} - \mathbb{E}_{t} [g_{t+1}]$$

$$\pi_{t} = \beta \mathbb{E}_{t} [\pi_{t+1}] + \kappa (y_{t} - g_{t}) + u_{t}$$

$$i_{t} = \rho_{R} i_{t-1} + (1 - \rho_{R}) \psi_{\pi} \pi_{t} + (1 - \rho_{R}) \psi_{y} (y_{t} - g_{t}) + \varepsilon_{R,t}$$

$$u_{t} = \rho_{u} u_{t-1} + \varepsilon_{u,t}, \quad g_{t} = \rho_{g} g_{t-1} + \varepsilon_{g,t}.$$

is trying to use the estimated parameter (history)

 $(\sigma, \beta, \kappa, \psi_{\pi}, \psi_{y}, \rho_{R}, \rho_{g}, \rho_{u}, \sigma_{R}, \sigma_{g}, \sigma_{u})$, to choose a policy rule (ψ'_{π}, ψ'_{y}) for

$$i_t^* = \psi_{\pi}' \pi_t + \psi_{y}' \left(y_t - g_t \right)$$

that minimize expected welfare loss in the form of $\lambda \pi_t^2 + y_t^2$ in the future.

Motivation - Policy Analysis

• Now consider two policies $(\psi_{\pi}, \psi_{\gamma}) = (1.5, 0)$, and (1.5, 0.125)

Table: Policy Comparison under Different Distributions and Weights

	$\lambda = 1$		λ =	= 3	$\lambda = 10$	
(ψ_π,ψ_{y})	post 1	post 2	post 1	post 2	post 1	post 2
(1.5, 0)			√		✓	✓
(1.5, 0.125)	\checkmark	\checkmark		\checkmark		

Policy choices are sensitive to prior choices as well.

Research Question

- Given a DSGE model and observed data.
 - * Sensitivity analysis: How much can the posterior mean change as I change the prior (asymptotically)?
 - * Policy implications: Is it always possible to support a single policy rule robust of priors? If not, what is that range of policies?

Literature and Contributions

- Identification in DSGE models: Canova and Sala (2009), Iskrev (2010), Komunjer and Ng (2011), Qu and Tkachenko (2012), Qu and Tkachenko (2017), Kociecki and Kolasa (2018), Kociecki and Kolasa (2021)
- Robust Bayesian analysis: Berger et al. (1994), Berger, Insua, and Ruggeri (2000), Gustafson (2015), Liao and Simoni (2019), Giacomini and Kitagawa (2021), Ke, Montiel Olea, and Nesbit (2022), Giacomini, Kitagawa, and Read (2022)
- Sensitivity/weak identification in DSGE: Müller (2012), Guerron-Quintana, Inoue, and Kilian (2013), Andrews and Mikusheva (2015), Ho (2022)

Literature and Contributions

- Frequentist inference for set-identified models: Horowitz and Manski (2000), Manski (2003), Imbens and Manski (2004), Chernozhukov, Hong, and Tamer (2007), Stoye (2009), Romano and Shaikh (2010), Kaido, Molinari, and Stoye (2019)
- Bayesian inference for set-identified models: Baumeister and Hamilton (2015), Kline and Tamer (2016), Chen, Christensen, and Tamer (2018)
- My contribution:
 - A new robust Bayesian algorithm applied to DSGE models with theory.
 - I work on "global" identification rather than identification at certain point (KK21).
 - I study DSGE model, which has further complications (GK21).

Setup

Assumption

Roadmap

Linearized DSGE model with Gaussian shocks.

· Linear state-space representation

Assumption

Solution to the linear rational expectation model (LRM) is unique, i.e., no indeterminacy.

• Coefficients of the state-space model are uniquely determined.

Assumption

Deep parameters enter LRM in an algebraic expression way.

• e.g., NKPC in Gali (2015):
$$\pi_t = \beta E_t \{ \pi_{t+1} \} + \lambda \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha} \right) \tilde{y}_t$$

Estimate a Linearized DSGE model

Standard precedure

- S 1. Summarize a macro model with equilibrium conditions, measurement equations, etc.
- S 2. Log-linearization the equations around steady state, represent the model by a linear rational expectation model (LRM) with deep parameters θ .

$$\Gamma_0(heta) \left[egin{array}{c} S_t \ P_t \end{array}
ight] = \Gamma_1(heta) \mathbb{E}_t \left[egin{array}{c} S_{t+1} \ P_{t+1} \end{array}
ight] + \Gamma_2(heta) S_{t-1} + \Gamma_3(heta) arepsilon_t$$

 S_t state variables, P_t policy variables.

Estimate a Linearized DSGE model

Standard precedure

S 3. Solve the LRM, combine with measurement equations and attain a state-space representation.

$$S_t = A(\theta)S_{t-1} + B(\theta)\varepsilon_t$$

$$Y_t = C(\theta)S_{t-1} + D(\theta)\varepsilon_t$$

- S 4. Use a generic filter to compute the likelihood $p(y \mid \theta)$ through the state-space model.
- S 5. Start from a prior distribution π_{θ} , update by MCMC methods using the likelihood and obtain the posterior distribution of θ , $\pi_{\theta|y}$.

Definitions

Definition (OE)

Parameter $\bar{\theta}$ is observationally equivalent to θ if they have the same likelihood $p(y \mid \theta)$ for all data realization y.

A property independent of data

Definition (Identification)

 θ is identified if it has no observationally equivalent parameters.

Define the equivalence mapping K : Θ → 2^Θ, that is, p(y | θ) = p(y | θ̄) for all y, if and only if K(θ) = K(θ̄).

Algorithm

- S.1 Run standard Bayesian estimation, get posterior draws of θ from a given prior π_{θ} .
- S.2* Optimize over the observationally equivalent set of parameters of this draw, find the lower and upper bounds of parameters of interest.
 - Finding the OE set of a given parameter involves solving a polynomial system.
- S.3 Average the lower/upper bounds for means and quantiles.
 - Remark: When the model is identified at all draws, the proposed algorithm gives the same result as the standard Bayesian method.

Comparison with Giacomini and Kitagawa (2021)

• In GK21, the SVAR model

$$A_0 Y_t = a + \sum_{j=1}^p A_j Y_{t-j} + \varepsilon_t \text{ for } t = 1, \dots, T$$

have explicit reduced-form parameters.

- ullet What they did: prior over reduced-form o structural parameters.
- In GK21, the mapping between structural parameters and reduced-form coefficients is analytically tractable.

Roadmap

OE characterization

Assumptions

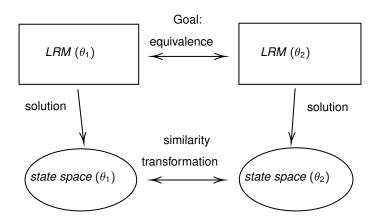
Define
$$N = APC' + B\Sigma D'$$
, where $P = E(S_tS'_t)$,

Assumption (Stability)

For every $\theta \in \Theta$ and for any $z \in \mathbb{C}$, $det(zI_{n_S} - A) = 0$ implies |z| < 1.

Assumption (Stochastic Minimality)

For every $\theta \in \Theta$, matrices \mathcal{O} have full column rank and \mathcal{C} have full row rank, i.e. $\operatorname{rank}(\mathcal{O}) = \operatorname{rank}(\mathcal{C}) = n_{\mathcal{S}}$. Where $\mathcal{O} \equiv (C' \quad A'C' \quad \cdots \quad A'^{n_{\mathcal{S}}-1}C')$, $\mathcal{C} \equiv (N \quad AN \quad \cdots \quad A^{n_{\mathcal{S}}-1}N)$.



Theorem (KK21)

Let stability and stochastic minimality assumptions hold. Then $\theta \sim \bar{\theta}$ if and only if

- 1) $\bar{A} = TAT^{-1}$,
- 2) $\bar{C} = CT^{-1}$,
- 3) $AQA' Q = T^{-1}\bar{B}\bar{\Sigma}\bar{B}'T'^{-1} B\Sigma B'$,
- 4) $CQC' = \bar{D}\bar{\Sigma}\bar{D}' D\Sigma D'$,
- 5) $AQC' = T^{-1}\bar{B}\bar{\Sigma}\bar{D}' B\Sigma D'$,

for some nonsingular $n_{\varepsilon} \times n_{\varepsilon}$ matrix T and symmetric $n_{\varepsilon} \times n_{\varepsilon}$ matrix Q. In addition, if $\theta \sim \bar{\theta}$ then both T and Q are unique.

Brief

- In order to use KK21, given a parameter $\bar{\theta}$, we need to link it to the solutions.
- Attain the solution, $S_t = \bar{A}(\theta)S_{t-1} + \bar{B}(\theta)\varepsilon_t$ and $P_t = \bar{F}(\theta)S_{t-1} + \bar{G}(\theta)\varepsilon_t$, plug in LRM, equate coefficients on both sides in terms of S_{t-1} , and ϵ_t .

$$\begin{split} \bar{\Gamma}_0^s \bar{A} + \bar{\Gamma}_0^p \bar{F} - \bar{\Gamma}_1^s (\bar{A})^2 - \bar{\Gamma}_1^p \bar{F} \bar{A} &= \bar{\Gamma}_2 \\ \bar{\Gamma}_1^s \bar{A} \bar{B} + \bar{\Gamma}_1^p \bar{F} \bar{B} - \bar{\Gamma}_0^s \bar{B} + \bar{\Gamma}_3 &= \bar{\Gamma}_0^p \bar{G} \end{split}$$

Brief

Therefore, we can solve for all observationally equivalent $\bar{\theta}s$ following the procedure

- S.1 Given θ , solve for state-space coefficients.
- S.2 Characterize $\bar{\theta}$ by KK21 and the previous two equations, unknowns include (not limit to) $\bar{\theta}$.
- S.3 Reduce a polynomial system to its reduced Grobner basis.

Additional Assumptions

Assumption (Measurability)

The equivalence mapping K is measurable.

Assumption (Continuity)

- (1) K is a continuous correspondence at θ_0 .
- (2) Parameters of interest $\eta:\Theta\to\mathbb{R}^n$ is continuous.

Assumption (Regularity)

Let the prior of deep parameters θ , π_{θ} , be absolutely continuous with respect to a σ -finite measure on (Θ, A) , and $\pi_{\theta}(\Theta) = 1$.

Multiple priors

• Define the class of all priors that the marginal distribution for K coincides with the given π_K , i.e.,

$$\Pi_{\theta}(\pi_{K}) = \{\pi_{\theta} : \pi_{\theta} \left(\{\theta : K(\theta) \in B\} \right) = \pi_{K}(B), \text{ for } B \in \mathcal{B}(\mathcal{F}) \}$$

- * The class of priors have the same push-forward measure π_K (by definition).
- * The class of priors induce the same prior predictive distribution $p(y) = \int p(y \mid \theta) d\pi_{\theta}.$
- * This class can be uniquely pinned down either by π_K or any element π_θ in it.

Robust Distributions

Theorem (Posterior Mean)

For a given π_{θ} , let measurability and regularity assumptions hold, that is, given a prior π_{θ} absolutely continuous with respect to a σ -finite measure, we have a push-forward measure π_{K} of π_{θ} under K that is also absolutely continuous. Define

$$\overline{\eta}^*(\theta) = \sup_{\theta' \in K(\theta)} \eta(\theta'), \quad \underline{\eta}^*(\theta) = \inf_{\theta' \in K(\theta)} \eta(\theta')$$

Then, the set of posterior means is characterized by

$$\sup_{\pi_{\theta\mid Y}\in\Pi_{\theta\mid Y}}\mathbb{E}_{\theta\mid Y}\left[\eta(\theta)\right]=\mathbb{E}_{\theta\mid Y}\left[\overline{\eta}^*(\theta)\right],\quad \inf_{\pi_{\theta\mid Y}\in\Pi_{\theta\mid Y}}\mathbb{E}_{\theta\mid Y}\left[\eta(\theta)\right]=\mathbb{E}_{\theta\mid Y}\left[\underline{\eta}^*(\theta)\right]$$

where $\Pi_{\theta \mid Y}$ collects the posteriors of $\Pi_{\theta}(\pi_K)$ for a given π_K .

Robust Distributions

Theorem (Consistency)

Let, in addition continuity assumption hold, assume further that induced prior π_K leads to a consistent posterior, and $\Theta \subset \mathbb{R}^p$, $H \subset \mathbb{R}^q$ for some $p, q < \infty$ are compact spaces. Then the Hausdorff distance between the set of posterior means and the convex hull of true identified set goes to zero almost surely as T increases, i.e.,

$$\lim_{T\to\infty} \textit{d}_{\textit{H}} \bigg(\textit{E}_{\theta\mid Y^T} \Big(\left[\underline{\eta}^*(\theta), \bar{\eta}^*(\theta) \right] \Big), \left[\underline{\eta}^*(\theta_0), \bar{\eta}^*(\theta_0) \right] \bigg) \to 0, \quad \textit{p} \left(\textit{Y}^\infty \mid \theta_0 \right) \textit{-a.s.}$$

Example 1: Cochrane Model

Consider the full model

$$x_t = \rho x_{t-1} + \epsilon_t, \quad |\rho| < 1, \epsilon_t \sim N(0, \sigma_\epsilon)$$

$$i_t = r + E_t \pi_{t+1}$$

$$i_t = r + \phi_\pi \pi_t + x_t, \quad \phi_\pi > 1$$

Deep parameters are $\theta = (\rho, \phi_{\pi}, \sigma_{\epsilon})$. The solution is equivalent to a AR(1) setting

$$\pi_t = \rho \pi_{t-1} + \frac{1}{\phi_{\pi} - \rho} \epsilon_t, \quad \epsilon_t \sim N(0, \sigma_{\epsilon}^2)$$

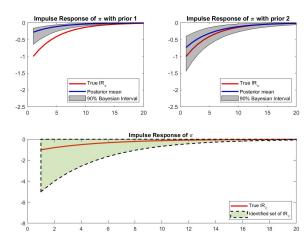
with reduced form parameters $\phi=(\rho,\frac{\sigma_{\epsilon}}{\phi_{\pi}-\rho}),(\phi_{\pi},\sigma_{\epsilon})$ not jointly identifiable.

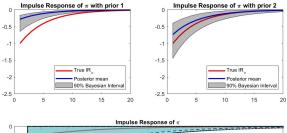
The impulse response function is also not identified.

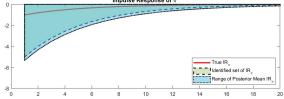
Table: Estimated Identified Set

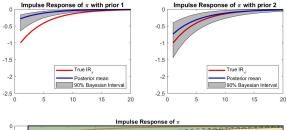
	True value	Identified set	Range of posterior mean		
$\sigma_{ extsf{e}}$	1	$(0.2,\infty)$	$(0.21,\infty)$		
ϕ_{π}	1.8	$(1,\infty)$	$(1.00,\infty)$		
ρ	8.0	0.8	0.80		

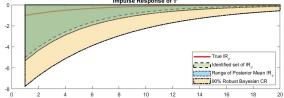
 Estimation of range of posterior means approximates the identified set well.











Example 2: An and Shorfheide (2007)

$$y_{t} = \mathbb{E}_{t} \left[y_{t+1} \right] - \frac{1}{\sigma} \left(i_{t} - \mathbb{E}_{t} \left[\pi_{t+1} \right] + \mathbb{E}_{t} \left[\mathbf{z}_{t+1} \right] \right) + g_{t} - \mathbb{E}_{t} \left[g_{t+1} \right]$$

$$\pi_{t} = \beta \mathbb{E}_{t} \left[\pi_{t+1} \right] + \kappa \left(y_{t} - g_{t} \right)$$

$$i_{t} = \rho_{B} i_{t-1} + \left(1 - \rho_{B} \right) \psi_{\pi} \pi_{t} + \left(1 - \rho_{B} \right) \psi_{y} \left(y_{t} - g_{t} \right) + \varepsilon_{B,t}$$

$$z_{t} = \rho_{z} z_{t-1} + \varepsilon_{z,t}, \quad g_{t} = \rho_{g} g_{t-1} + \varepsilon_{g,t}.$$

- $(\psi_{\pi}, \psi_{V}, \rho_{R}, \sigma_{R})$ are not identified.
- All the shocks, either has no effect on π_t or y_t , or affect π_t and y_t in the same direction.

Example 2: A Cost-push Shock Model

To generate meaningful trade-off between output gap and inflation,

$$y_{t} = \mathbb{E}_{t} [y_{t+1}] - \frac{1}{\sigma} (i_{t} - \mathbb{E}_{t} [\pi_{t+1}]) + g_{t} - \mathbb{E}_{t} [g_{t+1}]$$

$$\pi_{t} = \beta \mathbb{E}_{t} [\pi_{t+1}] + \kappa (y_{t} - g_{t}) + \mathbf{u}_{t}$$

$$i_{t} = \rho_{R} i_{t-1} + (1 - \rho_{R}) \psi_{\pi} \pi_{t} + (1 - \rho_{R}) \psi_{y} (y_{t} - g_{t}) + \varepsilon_{R,t}$$

$$u_{t} = \rho_{u} u_{t-1} + \varepsilon_{u,t}, \quad g_{t} = \rho_{g} g_{t-1} + \varepsilon_{g,t}.$$

- Positive cost-push shock $u \longrightarrow y \downarrow, \pi \uparrow$
- Positive monetary policy shock $\epsilon_R \longrightarrow y \downarrow, \pi \downarrow$

Example 2: Policy

Table: Policy Comparison under Different Distributions and Weights

	$\lambda = 1$		$\lambda = 3$		$\lambda = 10$	
(ψ_π,ψ_{y})	post 1	post 2	post 1	post 2	post 1	post 2
(1.5, 0)			\checkmark		✓	\checkmark
(1.5, 0.125)	\checkmark	\checkmark		\checkmark		
(1.5, 1)	√	√				
(5, 0)			\checkmark	\checkmark	\checkmark	\checkmark

• Policy choices can be robust to prior choices.

Conclusion

In this paper, I attack the following problems:

- Estimation results of set-identified DSGE models are sensitive to choice of priors (Identification)
 - Use a robust Bayesian algorithm, I can pick any 'reasonable' prior and obtain robust results.
 - * I also prove it asymptotically finds the frequentist identified set.
- Researchers are silent about non-identified DSGE models (Inference)
 - * The collection of posterior means of parameters of interest is given.
 - * One may still have nontrivial conclusions even when the model suffers identification problems.

Likelihood when T=1000,000

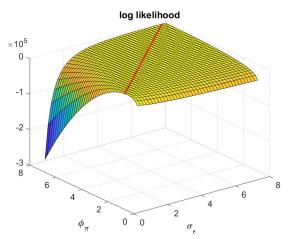


Figure: Likelihood function while fix $\rho = 0.8$

• Flat ridge along the $\sigma_\epsilon = \phi_\pi - 0.8$ line

Prior Sensitivity

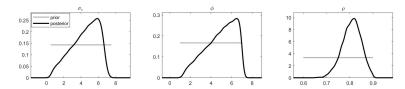


Figure: Cochrane model prior/posterior distribution with uniform priors

- The posterior of σ_{ϵ} and ϕ_{π} are extremely informative even if only $\frac{\sigma_{\epsilon}}{\phi_{\pi}-0.8}$ is identified.
- Reason? Joint likelihood density more concentrated on areas with higher values of ϕ_π and σ_ϵ .
- Back to main

Gröbner Basis

A reduced Gröbner basis is a set of multivariate polynomials enjoying certain properties that allow simple algorithmic solutions. For example, the equations:

$$x^3 - 2xy$$
, $x^2 - 2y^2 + x$.

has a reduced Gröbner basis

$$x^2$$
, xy , $y^2 - \frac{x}{2}$.

- Any zero of a Gröbner basis is also a zero of the original system.
- Reduced Gröbner bases are unique for any given set of polynomials and any monomial ordering.