Centralized or Decentralized? An Empirical Model on Task Assignment of Government in Pandemics

Qiwei He and Yizhoug Kuang

Cornell University

Sep 2020

Motivation: Task Assignment in Pandemic

- During the spread of COVID-19, designing, imposing and lifting mitigation policy has been the center of discussion.
- Two important observations:
 - Mitigation policies have geographical externalities.
 - Mitigation policies are issued either by subnational government (China, US etc.) or central government (Germany, Singapore etc.)
- Question: Should mitigation policy be a Centralized or Decentralized decision?

Motivation: Task Assignment in Pandemic

- Task assignment of government (Oates, 1972):
 - Centralization internalizes externalities while decentralization respects heterogeneity.
- We revisit this famous intuition by analyzing the task assignment problem of government in pandemics.
- What's new conceptually?
 - Fighting with pandemic is a dynamic task, i.e. focusing on the timing of mitigation policy.
 - We introduce new channels that may mediate the classical intuition.

This Paper

- We write down a dynamic game model of regional government's decision on mitigation policy.
 - Regional authorities trade off between cost of economy, value of lives and political concerns based on regional characteristics.
 - But they did not taking into consideration of the externalities.
- 2 important factors that could affect their decision:
 - Regional differences in value system, e.g. political attitude, electoral concerns etc. (Barrios and Hochberg 2020., Allcott et al. 2020.)
 - Differences of regional economic indicators, e.g. unemployment and consumer expenditure, etc.

This Paper (CONT')

- We estimate the models using the observed lock-down timing and cases/deaths data of COVID-19, social-distancing metrics and Macro data in the US.
 - Step 1: Estimate a structural SIR model with regional spillover.
 - Step 2: Estimate a dynamic game model to find decision-related parameters.
- The policy experiments that we are interested in are:
 - Optimal timing of lock-down and reopening decision made by encompassing externalities.
 - Is it better for federal government to design the timing of mitigation policy?

Our paper is closely related to literature on COVID-19, public good and externalities, and dynamic game.

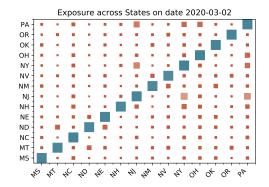
- Literature on epidemics, pandemics and COVID-19:
 - Structural estimation of SIR model. (Atkeson et al. 2020; Fernández-Villaverde and Jones 2020; Berger et al 2020; Eichenbaum et al 2020; Piguillem and shi 2020)
 We extended classic SIR model with spillover effects.
 - Strategies/effectiveness of lock-down/mitigation policies. (Acemoglu et al. 2020 Alvarez et al.2020; Fang et al. 2020; Jones et al 2020)
 We estimate a dynamic game between local governments.
 We also construct counterfactuals based on estimation results to reveal the effectiveness of mitigation policies.
 - Estimation of epidemiological parameters. (Manski and Molinari 2020)
 We make use of these bounds in our structural SIR simulation.

- The classical literature of public good and its externalities:
 - Task assignment of government (Oates et al. 1972; Banzhaf and Chupp. 2012; Kuwayama and Brozović. 2013; Knight. 2013)
 Our model makes it possible for us to evaluate the welfare implication of various counterfactual task assignments.
- The estimation method we adopt is from the literature of empirical estimation of dynamic game. (Aguirregabiria and Mira. 2007; Bajari, Benkard, Levin. 2007; Pakes et al 2007; Sweeting 2012; Ryan 2012)

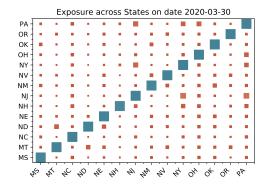
Data

- Footage data:
 - PlacelQ: We use this well-constructed LEX index as an alternative to test robustness
 - Safegraph: Daily phone tracking data accurate to the nearest census block group
- Epidemiological data:
 - We use the tested, confirmed and death data from The COVID Tracking Project.
- Economic Indicators:
 - The economic indicators that we use are from The Opportunity Insights Economic Tracker program
- Government Interventions:
 - We collect the dates on interventions via online announcements

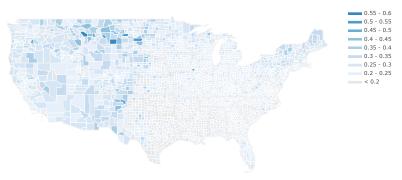
Empirical Evidence 1: Inter-state Exposure



Empirical Evidence 1: Inter-state Exposure



Empirical Evidence 2: Social Distancing



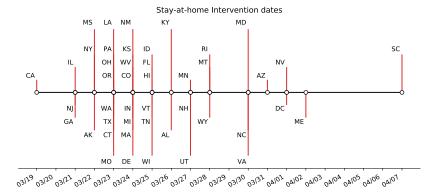
March 2 2020 Completely at Home Ratio

• Data from SafeGraph: This ratio is measured by the share of mobile devices which did not leave home.

Empirical Evidence 2: Social Distancing

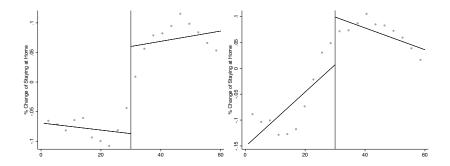
March 30 2020 Completely at Home Ratio

Empirical Evidence 3: Intervention timeline



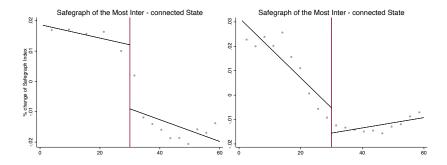
- To show the effect of state government's mitigation policy, we plot % change of activity around the time of different mitigation policies.
- The outcome variables are change of stay-at-home ratio & inter-state activity.
 - We control for confirmed cases to capture voluntary activity reduction.
 - Other controls include state fixed effect, the effect of each day of a week and holidays.
- We also conduct a falsification test to show that state *m*'s mitigation policy does not affect the movement from state *m*' to *m*.

Empirical Evidence 3: Event study



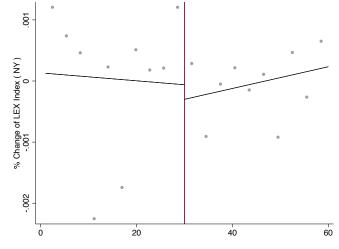
- Left: First state intervention.
- Right: Stay-at-home order

Empirical Evidence 3: Event study



- Left: First state intervention.å
- Right: Stay-at-home order

Empirical Evidence 3: Event study



Falsification test.

- Time is discrete. Everyone in the economy discounts future by the same δ .
- There are M heterogeneous regions, $m \in \{1, 2, 3, ..., M\}$.
- At each point of time t, each region has a population of n_t^m . $n_t = \sum_r^M n_t^m$. The initial population is n^m and n respectively
- $\forall t$, each individual in each *m* can be one of the 4 types:

• Susceptible s_t^m , infected i_t^m , dead d_t^m or recovered r_t^m .

- Susceptible (s_t^m) : individuals that have not been exposed to the virus.
- Infected (i_t^m) : individuals that are infected and are infectious.
- Recovered (r_t^m) : infected individuals that have recovered have immunity thereafter.
- Dead (d_t^m) : individuals that die of the disease at t.
- In each period, we have the following equality holds in each region: $1 = s_t^m + i_t^m + r_t^m + d_t^m$.

- Government can impose mitigation policies on the regional economy.
- We assume that the lock-down decision is a discrete decision that has a total L + 1 possible actions, i.e. l^m_t ∈ {0, l₁, l₂,...l_L}.
- As shown in the previous reduced form analysis, we focus on the timing of 2 policies interventions: first policy issued and stay at home order.
- Currently, we focus on a set of closely connected states NY, NJ, CT, PA, DE, RI and MA.

COVID-19 State Transitions: Law of Motion

■ We consider a simple SIR structure with regional spillover effect.

$$\Delta s_{t+1}^{m} = -\lambda_{m,m}(l_{t}^{m})\beta^{m}(l_{t}^{m})\frac{s_{t}^{m}}{1-d_{t}^{m}}i_{t}^{m} - \sum_{m'\neq m}\lambda_{m,m'}(l_{t}^{m'})\beta^{m'}(l_{t}^{m'})i_{t}^{m'}\frac{s_{t}^{m}}{1-d_{t}^{m}}$$
$$\Delta i_{t+1}^{m} = \lambda_{m,m}(l_{t}^{m})\beta^{m}(l_{t}^{m})\frac{s_{t}^{m}}{1-d_{t}^{m}}i_{t}^{m} + \sum_{m'\neq m}\lambda_{m,m'}(l_{t}^{m'})\beta^{m'}(l_{t}^{m'})i_{t}^{m'}\frac{s_{t}^{m}}{1-d_{t}^{m}} - \gamma i_{t}^{m}$$
$$\Delta r_{t+1}^{m} = (1-\nu)\gamma i_{t}^{m}$$
$$\Delta d_{t+1}^{m} = \nu\gamma i_{t}^{m}$$

- where $\lambda_{i,m}$ is the inter-regional connection, β^m is the infection rate and γ, ν are standard COVID-19 related parameters.
- To solve the model using full-information we need to solve for a 4-variable diffusion process, which needs extra work than Ait-Sahalia (2002, 2008), and is beyond this paper.

COVID-19 State Transitions: Indirected Inference

• We consider the following regime-switching model with Weilbull function as our auxiliary model and conduct indirect inference for each *m*.

$$\Delta d_t = d \frac{b}{a} \left(\frac{t - t_0 - c}{a} \right)^{b-1} \exp \left[- \left(\frac{t - t_0 - c}{a} \right)^b \right] + \sigma_{k_t} \epsilon_t$$

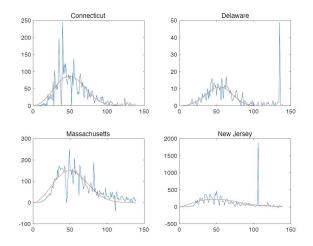
 k_t here is the regime at time t, ϵ_t are i.i.d. and canonical Gaussian. σ_{k_t} is regime specific variances.

 To further use information other than dt, we also impose bounds on model implied infected population at each period t from Manski and Molinari (2020) when conducting estimation.

Choice of parameters:

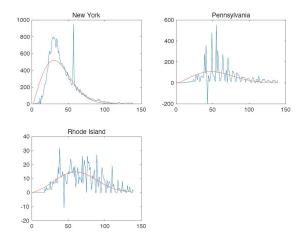
- $\{\lambda_{m,m'}(I^m)\}$ is calibrated from Safegraph data.
- γ is the daily rate at which agents who are infected stop being infectious. We use the median incubation period 5 from literature, that is, $\gamma = 1/5$.
- We denote the infection-fatality rate from the disease by ν . We consider values of $\nu = 1\%$ as our baseline value and 1.4% as an alternative value.
- Bound for sensitivity is 0.6 and 0.9, specificity is set to be 1.
- Via indirect inference, we got estimates for $\beta^m(I)$, $\forall m$, which can be used for simulating counter-factual disease propagation.

Simulation results 1

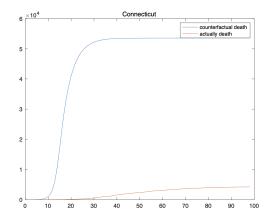


- Day 1 is March 12th.
- Red line is the simulated daily death, blue line is the actual data from The Covid-tracking Project.

Simulation results 1



- Day 1 is March 12th.
- Red line is the simulated daily death, blue line is the actual data from The Covid-tracking Project.



- Day 1 is March 14th.
- Blue line is the counterfactual death toll without any mitigation policy, red line is the actual accumulated deaths.

Economic State Variables

- We collect a set of economic related state variables ($\mathbf{E}_t = \{E_t^1, ..\}$). Specifically $E_t^m = \{b_t^m, u_t^m\}$ contains:
 - b_t^m is the percentage change of small business revenue.
 - u_t^m is the change of unemployment rate.
- We assume that **E**_t is affected by the COVID-19 situation, but not the other way around.
 - We parameterized the transition of **E**_t estimation of the transition density for **E**_t given COVID-19 state variables and **E**_{t-1}.

Economic State Variables

We assume that both b^m_t and u^m_t is evolved according to the following parameterized AR(1) transition density:

$$b_t^m = \rho^b b_{t-1}^m + \rho_b^z Z_t + \sum_k \rho_b^l \mathbf{1}(I^m = k) + e_t^m$$

$$u_t^m = \rho^u u_{t-1}^m + \rho_u^z Z_t + \sum_k \rho_u^l \mathbf{1}(l^m = k) + e_t^m$$

where Z_t consists of d_t^m , $(d_t^m)^2$, Δd_t^m and $(\Delta d_t^m)^2$. e_t^m is a i.i.d. N(0,1) error.

- In practice, all state variables are logged. We pool all regions together in estimation.
- Putting together with our results on $p(\Delta d_t, d_t | \Delta d_{t-1}, d_{t-1}, L_t)$, we have the transition density of all the state variables $p(\mathbf{X}_t | \mathbf{X}_{t-1}, \mathbf{L}_t)$.
 - The structural of our SIR model makes it sufficient to carry 2 covid state variables.

Economic State Var Transition

	(1)	(2)
	Ump	Revenue
L.Ump	0.985***	
	(0.00248)	
L.Revenue		0.965***
		(0.00817)
L.Daily Death	0.00117	-0.0300***
	(0.00134)	(0.00630)
L.Daily Death Square	-0.000840***	0.00212***
	(0.000139)	(0.000733)
L.Cumulative Death	-0.00182	0.0297***
	(0.00136)	(0.00638)
L.Cumulative Death Square	0.000452***	-0.00127***
	(0.0000812)	(0.000427)
Mitigation Policy=1	-0.00708***	-0.0654***
	(0.00147)	(0.00767)
Mitigation Policy=2	-0.0144***	-0.0774***
	(0.00211)	(0.0121)
R-square	1	1
Observations	539	539

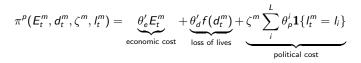
Table: Transition Density of Economics State Variables

Dynamic Game: Per-period Payoffs

• The per-period payoff of regional government is described as below:

$$\pi(\mathbf{L}_t, \mathbf{X}_t, \xi_i^m) = \pi^p(E_t^m, d_t^m, \zeta^m, I_t^m) + \xi_t^m$$

• where $\xi_t^m \sim N(0, 1)$ is a choice specific i.i.d. random shock



- f is a polynomial up to the 2nd order.
- There is a *m* specific cost of implementing policy, where ζ^m is the share of voters in *m* that voted for Trump during the 2016 pesidential election. (Allcott et al.2020)

- We focus on Markov Perfect Equilibrium, i.e. given a same state X_t, ξ^m, player m make same choices over time.
- Follow the BBL, we assume the data observed are generated by a single MPE profile L.
- Per-period payoff function $\pi(\mathbf{L}_t, \mathbf{X}_t, \xi_i^m)$ satisfies the Monotone Choice assumption. So we can estimate $Pr(I_t^m | \mathbf{X}_t)$ given the distribution knowledge of ξ_t^m .

• We estimate the policy function using the ordered-Probit model.

- The dependent variable is the observed policy choice for each day, which is chosen from an ordered set {0, FSA, SAH}.
- Explanatory variables are (logged): e_t^m , u_t^m , Δd_t^m , $(\Delta d_t^m)^2$, d_t^m , $\sum_{m' \neq m} \Delta d_t^{m'}$, $(\sum_{m' \neq m} \Delta d_t^{m'})^2$, $\sum_{m' \neq m} d_t^{m'}$.
- Other regions' state variables are grouped together when enter the policy function of region *m*, following Ryan (2012).

CCP Estimation

	Mitigation Policy	
Ump	36.12**	
omp	(14.49)	
	(14.45)	
Revenue	-0.424	
	(1.974)	
	()	
Daily Death	2.273	
	(2.230)	
l_daily_death_2	0.273***	
-	(0.0737)	
Cumulative Death	-2.174	
	(2.192)	
Sum Daily Death	-17.07***	
	(5.830)	
	1 000***	
Sum Daily Death Square	1.228***	
	(0.353)	
Sum Cumulative Death	8.601**	
	(3.710)	
cut1		
Constant	-11.18**	
	(5.452)	
cut2		
Constant	-0.196	
	(4.720)	
R-square	0.915	
Observations	546	

Table: Estimation of CCP

- We approximate value function through forward simulation a la BBL.
- Let V(X; L; θ) denote the value function of firm i at state X, where Markov strategy L is used by all m.

$$V(\mathbf{X}; \mathbf{L}; \theta) = \mathbb{E}\left[\sum_{t=0}^{T} \beta^{t} \pi \left(\mathbf{L}(\mathbf{X}_{t}, \xi_{t}), \mathbf{X}_{t}, \xi_{t}^{m}; \theta\right)\right) | \mathbf{X}_{0} = \mathbf{X}; \theta\right]$$

where T and β should be chosen s.t. value function after T periods is sufficiently small, e.g. $\beta = 0.98$ and T = 120.

Dynamic Game: Value Function Approximation

- Then we could do the simulation of VF for 546 unique state realizations observed in the data.
- A single simulated path of play can be obtained by the following:
 - 1. Starting at state $X_0 = X$, draw private shock ξ_o^m from N(0,1) for each m.
 - Pick an action I^m₀ from any Markov strategy profile L(X₀, ξ₀) (or any other deviations of it) and the resulting profits π (L(X₀, ξ₀), X₀, ξ^m₀; θ)).
 - **3.** Draw a new state X_1 using the estimated transition density **P**.
 - 4. Repeat above steps for T periods.

We averaging G different paths of play to obtain a estimate of $V(\mathbf{X}; \mathbf{L}; \theta)$ given any strategy profiles.

• Notice that we can use the linearity simplification because the way θ enters into the profit function.

Dynamic Game: Equilibrium and "BBL" Estimator

• The strategy profile L is a MPE if and only if $\forall m, \forall X$, and \forall alternative Markov policies I',

$$V\left(\mathbf{X}; l', \mathbf{L}_{-m}; \theta\right) \leq V\left(\mathbf{X}; l, \mathbf{L}_{-m}; \theta\right)$$

■ Thus we can form the following estimator ("BBL" Estimator)

$$\hat{\theta}^{BBL} = \operatorname*{argmin}_{\theta} \sum_{\mathbf{X}} \sum_{l'} \max\{\left(V\left(\mathbf{X}; l', \mathbf{L}_{-m}; \theta\right) - V\left(\mathbf{X}; l, \mathbf{L}_{-m}; \theta\right)\right)^2, \mathbf{0}\}$$

To obtain a reasonable estimator, we need to think carefully about the potential deviation strategy l'.

 Alternatively, we could construct a moment inequality based estimator ('MI Estimator"), where the moment inequality is of the form

$$\sum_{\mathbf{X}} V\left(\mathbf{X}; l', \mathbf{L}_{-m}; \theta\right) - V\left(\mathbf{X}; l, \mathbf{L}_{-m}; \theta\right) \leq 0$$

for an alternative strategy l'.

 According to Sweeting (2013), the estimates from above 2 estimators are sensitive to the choice of alternative strategies.

Dynamic Game: GMM Estimator

• We could also construct GMM estimator by the following steps:

- **1.** When simulating a single path of play, approximate $V(\mathbf{X}; I, \mathbf{L}_{-m}; \theta)$ for all $I = 0, I^1, I^2$ and then find the *I* that maximizes the object.
- 2. Simulate for G path and then calculate probability of chosing each choice 0 l_1 and l_2 based on the simulation results, denote it as vector $\hat{l}(\mathbf{X})$.
- Find the θ that minimizes the simulation based CCP and actual choice vector I^{data}(X) observed in data.

More formally, the GMM estimator is

$$\theta^{GMM} = \underset{\theta}{\operatorname{argmin}} \sum_{\mathbf{X}} \left[\hat{I}(\mathbf{X}) - I^{data}(\mathbf{X}) \right]' \left[\hat{I}(\mathbf{X}) - I^{data}(\mathbf{X}) \right]$$

Counter-factual 1: Optimal Timing

 Social planner seeks to minimize the present discounted loss described as below:

$$\min_{l_t^m \in \{0, l_1, \dots, l_L\}} \quad \sum_{t=0}^{\infty} \delta^t \left[\sum_m \frac{n^m}{n} \pi^p (E_t^m, d_t^m, \zeta^m, l_t^m) \right]$$

where

$$\pi^{p}(\boldsymbol{E}_{t}^{m},\boldsymbol{d}_{t}^{m},\boldsymbol{\zeta}^{m},\boldsymbol{I}_{t}^{m}) = \hat{\theta}_{e}^{\prime}\boldsymbol{E}_{t}^{m} + \hat{\theta}_{d}^{\prime}\boldsymbol{f}(\boldsymbol{d}_{t}^{m}) + \boldsymbol{\zeta}^{m}\sum_{i}^{L}\hat{\theta}_{p}^{i}\boldsymbol{1}\{\boldsymbol{I}_{t}^{m} = \boldsymbol{I}_{i}\}$$

- $\hat{\theta}'_e$, $\hat{\theta}'_d$ and $\hat{\theta}^i_p$ are estimates from the previous estimation step.
- We seek to solve this single player dynamic problem and find the CCP that minimizes the PDV.

Counter-factual 2: Federal Decision Making

 Federal government seeks to minimize the present discounted loss described as below:

$$\min_{l_t^m \in \{0, l_1, \dots, l_L\}} \quad \sum_{t=0}^{\infty} \delta^t \left[\pi^f (\boldsymbol{E}_t^m, \boldsymbol{d}_t^m, \zeta, l_t^m) \right]$$

where

$$\pi^{f}(E_{t}^{m}, d_{t}^{m}, \zeta, l_{t}^{m}) = \hat{\theta}_{e}^{i} \sum_{m} \frac{n^{m}}{n} E_{t}^{m} + \hat{\theta}_{d}^{i} \sum_{m} \frac{n^{m}}{n} f(d_{t}^{m}) + \zeta \sum_{i}^{L} \hat{\theta}_{p}^{i} \mathbf{1}\{l_{t}^{m} = l_{i}\}$$
(1)

- $\hat{\theta}'_e$, $\hat{\theta}'_d$ and $\hat{\theta}^i_p$ are estimates from the previous estimation step.
- ζ is the share of voters in *M* regions that voted for Trump in 2016 presidential election.
- We seek to solve this single player dynamic problem and find the CCP that minimizes the PDV.

- We are now at the stage of estimating the transition density of p(X' | X, L)
 - We have a closed form for transition of (i', d') conditional on (i, d, L)
 - Need to (non)parametrically estimate p(E' | E, i, d, L)
 - Curse of dimensionality
- What rules should be used to determine number of grid when we discretize the state variables?

Feedback

- Please give us feedback on:
 - Modeling choices
 - Estimation strategies
 - Literature
- Any other advice are appreciated!
- Thank you!