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Individual and common information acquisition

Information can improve decisions taken under uncertainty

From the theoretical literature we know that:

� The marginal value of information is state-dependent

� Common information is more likely to affect aggregate outcomes

� Private vs public information dichotomy important in strategic

settings

Little empirical work studying relative importance of individual vs

common information outside highly structural models
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This paper

What we do:

1. Propose a method to extract individual and common signals from

repeated cross-section of probability forecasts under weak

assumptions

2. Ask and answer new questions about the empirical properties of

individual and common information

Key assumption: Forecasters use Bayes’ rule to update their beliefs
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The plan

1. The Survey of Professional Forecasters (SPF) probability forecasts

2. Extracting common and individual signals from a cross-section of

belief revisions

3. Empirical evidence on the informativeness of individual and common

signals

4. Characterize the estimated signals under alternative information

structures
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The SPF data



The Survey of Professional Forecasters

Quarterly survey of practitioners about macroeconomic variables

� Participants are from industry, Wall Street, commercial banks and

academic research centers

� Survey elicits both point and probability forecasts

� Probability forecasts

� GDP growth (1968:Q4 →), GDP deflator (1968:Q4 →), PCE

(2007:Q1 →), CPI (2007:Q1 →) and unemployment (2009:Q2 →)

� Fixed-event forecasts about calendar year outcomes

� Outcome bins pre-specified by administrators of survey

� Forecasters are anonymous to users of the survey but trackable

through id numbers

Fixed-event forecasts allow us to observe how cross-section of beliefs

about a given calendar year is revised over time
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Heat map for average density forecasts
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Example: Observed belief revisions of forecaster #570
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Decomposing a cross-section of

belief revisions



Decomposing a cross-section of belief revisions

Common signal

� What is the single signal that, if observed by all forecasters, can

explain the most of the belief revisions of all the forecasters?

Individual signal

� What is the signal that is necessary to explain a forecaster’s residual

belief revision not accounted for by the common signal?
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Decomposing a cross-section of belief revisions
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Signals and the cross-section of belief revisions
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Notation

� Generic macroeconomic outcome xn ∈ X : n = 1, 2, ...,N

� Forecasters indexed by j = 1, 2, ..., J

� Signals s ∈ S

� Prior beliefs of forecaster j is p(x | Ωj
t−1)

� Posterior beliefs of forecaster j is p(x | Ωj
t) = p(x | Ωj

t−1, st , s
j
t )
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Bayes rule, belief updates and realized signals

Bayes’ rule give the posterior probability of xn as

p(xn | Ωj
t−1, st) =

p(st | xn)p(xn | Ωj
t−1)

p(st | Ωj
t−1)

.

Since p(st) is a normalizing constant independent of x we get

p(st | xn) ∝
p(xn | Ωj

t−1, st)

p(xn | Ωj
t−1)

.

Note:

� From now on, a signal means p(s | x) ∈ [0, 1]N

� Signal labels do not matter for how agents update their beliefs

� An observed belief revision is informative about the properties of the

realized signal, not the complete signal structure p(S | X )
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Defining the common signal

The estimated common signal ŝt about the event x is defined as

ŝt = arg min
s∈[0,1]N

J∑
j=1

KL(Ωt ,Ωt−1, st)

where KL(Ωt ,Ωt−1, st) is the Kullback-Leibler divergence

KL(Ωj
t ,Ω

j
t−1, st) =

N∑
n=1

p(xn | Ωj
t) log

(
p(xn | Ωj

t)

p(xn | Ωj
t−1, st)

)
.

� p(x | Ωj
t) = observed posterior

� p(x | Ωj
t−1, st) = beliefs induced by st
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Inverting Bayes Rule to extract individual signals

Define the individual signal s jt as the signal that when combined with

the common signal and the observed prior result in the observed posterior.

From Bayes’ rule

p(xn | Ωj
t−1, st , s

j
t ) =

p(s jt | xn)p(xn | Ωj
t−1, st)

p(s jt | Ω
j
t−1, st)

.

so that

p(s jt | xn) ∝
p(xn | Ωj

t−1, st , s
j
t )

p(xn | Ωj
t−1, st)

.

where p(x | Ωj
t) ≡ p(xn | Ωj

t−1, st , s
j
t ) is the period t posterior.
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Signals and the cross-section of belief revisions
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3 measures of signal

informativeness



3 measures of signal informativeness

1. The update measure captures magnitude of belief revision

KL(s,Ωj) =
N∑

n=1

p(xn | Ωj) log

(
p(xn | Ωj)

p(xn | Ωj , s)

)
2. The negative entropy measure captures magnitude of belief

revision from a maximum entropy prior

H(s) =
N∑

n=1

p (xn | Ωu, s) log p (xn | Ωu, s)

where Ωu is the uniform prior.

3. The precision measure captures precision of signal

P(s) = var (xn | Ωu, s)−1

All measures are defined so that a higher value implies a more

informative signal
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The update measure and the prior

State-dependent probability of signal s
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3 measures of signal informativeness

1. The update measure captures magnitude of belief revision

KL(s,Ωj) =
N∑

n=1

p(xn | Ωj) log

(
p(xn | Ωj)

p(xn | Ωj , s)

)
2. The negative entropy measure captures magnitude of belief

revision from a maximum entropy prior

H(s) =
N∑

n=1

p (xn | Ωu, s) log p (xn | Ωu, s)

where Ωu is the uniform prior.

3. The precision measure captures precision of signal

P(s) = var (xn | Ωu, s)−1

All measures are defined so that a higher value implies a more

informative signal
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Entropy vs variance measures

Low entropy, high precision
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Empirical properties of individual

and common signals



Time varying informativeness of signals about CPI inflation
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Time varying informativeness of signals about unemployment
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Cross-section of informativeness of signals
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Informativeness and macro outcomes: CPI inflation

CPI inflation

πcpi
t πcpi

t−1 ∆πcpi
t

∣∣∣∆πcpi
t

∣∣∣ ∣∣∣∆πcpi
t−1

∣∣∣
Individual signals

KL -0.08 -0.13 0.08 0.48 0.45

H -0.20 -0.22 -0.03 0.36 0.35

P -0.17 -0.22 0.05 0.36 0.35

Common signals

KL 0.12 0.15 -0.03 0.23 0.44

H 0.25 0.21 0.14 0.45 0.53

P 0.02 0.04 -0.12 -0.06 0.29

Table 1: Correlation of information measures and CPI inflation outcomes.
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Informativeness and macro outcomes: CPI inflation

CPI inflation

πcpi
t πcpi

t−1 ∆πcpi
t

∣∣∣∆πcpi
t

∣∣∣ ∣∣∣∆πcpi
t−1

∣∣∣
Individual signals

KL -0.08 -0.13 0.08 0.48 0.45

H -0.20 -0.22 -0.03 0.36 0.35

P -0.17 -0.22 0.05 0.36 0.35

Common signals

KL 0.12 0.15 -0.03 0.23 0.44

H 0.25 0.21 0.14 0.45 0.53

P 0.02 0.04 -0.12 -0.06 0.29

Table 2: Correlation of information measures and CPI inflation outcomes.
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Informativeness and macro outcomes: Unemployment

Unemployment

ut ut−1 ∆ut |∆ut | |∆ut−1|

Individual signals

KL 0.27 0.38 -0.18 -0.06 -0.19

H 0.16 0.31 -0.24 0.07 -0.10

P 0.32 0.28 0.06 -0.11 -0.11

Common signals

KL 0.22 0.48 -0.41 0.38 0.14

H 0.20 0.40 -0.31 0.24 0.04

P 0.21 0.43 -0.35 0.31 0.12

Table 3: Correlation of information measures and unemployment outcomes.
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Informativeness and macro outcomes: Unemployment

Unemployment

ut ut−1 ∆ut |∆ut | |∆ut−1|

Individual signals

KL 0.27 0.38 -0.18 -0.06 -0.19

H 0.16 0.31 -0.24 0.07 -0.10

P 0.32 0.28 0.06 -0.11 -0.11

Common signals

KL 0.22 0.48 -0.41 0.38 0.14

H 0.20 0.40 -0.31 0.24 0.04

P 0.21 0.43 -0.35 0.31 0.12

Table 4: Correlation of information measures and unemployment outcomes.
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Some implications for theoretical

models



Informativeness and the business cycle: Theory

Information counter-cyclical: Incentives to acquire information

strongest during downturns

- Chiang (WP 2022), Song and Stern (2022) and Flynn and Sastry (WP 2022)

or

Information pro-cyclical: Economic activity generates information

- Chalkley and Lee (RED 1998), Veldkamp (JET 2005), Van Nieuwerburgh and

Veldkamp (JEEA 2006), Ordoñez (JPE 2013), Fajgelbaum, Shaal and

Taschereau-Dumouchel (QJE 2017)
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The Anxious Index:

Informativeness and probability of a recession

CPI inflation unemployment GDP growth GDP deflator PCE inflation

Individual signals

KL 0.20 0.06 0.27 0.23 0.24

H 0.15 0.24 0.27 0.17 0.24

P 0.13 -0.20 -0.02 -0.06 0.23

Common signals

KL 0.16 0.72 0.18 0.08 0.19

H 0.26 0.45 0.24 0.14 0.17

P 0.03 0.58 0.04 -0.10 0.04

Table 5: Correlation between the Philadelphia Fed’s Anxious Index and the
measures of informativeness.

But: Informativeness of signals only weakly correlated with NBER

recessions and with mixed signs.
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The VIX Index:

Informativeness and financial volatility

CPI inflation unemployment GDP growth GDP deflator PCE inflation

Individual signals

KL 0.29 0.36 0.25 0.12 0.22

H 0.29 0.30 0.20 0.10 0.23

P 0.32 0.03 0.17 -0.02 0.19

Common signals

KL 0.12 0.26 0.22 0.15 0.17

H 0.25 0.16 0.22 0.12 0.22

P 0.02 0.10 0.17 -0.07 0.05

Table 6: Correlation between VIX and measures of informativeness.
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Characterizing the extracted

signals



A sufficient FOC for the common signal

Proposition. The estimated common signal ŝt induces average beliefs

equal to the average observed posterior distribution

1

J

J∑
j=1

p (xn | Ωt−1, ŝt) =
1

J

J∑
j=1

p (xn | Ωt) : n = 1, 2, ...,N.

Corollary. The estimated individual signals induces belief updates that

average to zero across agents

1

J

J∑
j=1

[
p
(
xn | ŝ jt , ŝt ,Ω

j
t−1

)
− p

(
xn | ŝt ,Ωj

t−1

)]
= 0 : n = 1, 2, ...,N.
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The mean-posterior-over-mean-prior-odds ratio and the com-

mon signal

The mean-posterior-over-mean-prior odds ratio Rn
m is defined as

Rn
m =

 1
J

∑J
j=1 p

(
xn | Ωj

t

)
1
J

∑J
j=1 p

(
xm | Ωj

t

)
 /

 1
J

∑J
j=1 p

(
xn | Ωj

t−1

)
1
J

∑J
j=1 p

(
xm | Ωj

t−1

)


The ratio Rn
m captures how much period t information shifts average

beliefs in favor of state n relative to state m.

Proposition. If the prior beliefs of all forecasters coincide, the relative

probability of observing ŝt in states n and m is given by

p (ŝt | xn)
p (ŝt | xm)

= Rn
m.
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Conditions for convergence to true signal in limit with large

number of agents

Proposition. Let p
(
s j | xn

)
be a random variable with support (0, 1)

and mean µj
n. The estimated signal converges in probability to the true

common signal, i.e. ŝ → s as J → ∞, if µj
m = µk

n for each

m, n ∈ {1, 2, ...,N} and j , k ∈ {1, 2, ..., J} and if p
(
s j | xn

)
is

independent of p
(
xm | st ,Ωj

t−1

)
for each m, n ∈ {1, 2, ...,N}.

These conditions are very stringent: Rules out that individual signals are

on average informative
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A popular linear-Gaussian information structures

Priors x | Ωj
t−1 ∼ N

(
µj , σ2

)
where µj ∼ N

(
µ, σ2

µ

)
.

Common signal st = x + η : η ∼ N
(
0, σ2

η

)
Individual signal s jt = x + εj : εj ∼ N

(
0, σ2

ε

)
Posterior of agent j

E
(
x | Ωj

t−1, st , s
j
t

)
= gµµ

j + gsst + gjs
j
t

var
(
x | Ωj

t−1, st , s
j
t

)
=
(
σ−2
j + σ−2

η + σ−2
ε

)−1

where

gµ =
σ−2

σ−2 + σ−2
η + σ−2

ε

, gs =
σ−2
η

σ−2 + σ−2
η + σ−2

ε

, gj =
σ−2
ε

σ−2 + σ−2
η + σ−2

ε

.
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Linear-Gaussian information structures

Proposition. Up to the discrete approximation, the estimated common

signal ŝ has conditional distribution

p (ŝ | x) ∼ N
(
x̂ , σ̂−2

η

)
where

x̂ = (1− ĝ)−1
[
(gµ − ĝ)µ+ gss + gjx

]
for ĝ = σ−2

σ̂−2
η +σ2

and where σ−2
η̂ solves the equation

g2
µσ

2
ε + g2

j σ
2
ε +

(
σ−2 + σ−2

η + σ−2
ε

)−1
= ĝ2σ2

ε +
(
σ−2 + σ̂−2

η

)−1
.
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Linear-Gaussian information structures

Corollary. The estimated common signal ŝt coincides with s for all

realizations if and only if σ2
ε → ∞.

Corollary. If the true common signal is uninformative
(
σ2
η → ∞

)
, then

the estimated common signal is of the form ŝ = α (x − µ) with α ≥ 1.

Corollary. The estimated common signal precision σ̂−2
η is increasing in

both σ−2
ε and σ−2

η .

Corollary. The estimated private signals ŝ j ∼ N
(
gµj + gss + gjx , σ̂

2
ε

)
where

σ̂−2
ε = σ−2

ε −
(
σ̂−2
η − σ−2

η

)
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Summing up

Decompose cross-section of belief revisions into common and

idiosyncratic sources

� Method imposes only relatively weak assumptions

� Individual signals on average more informative than common signals

- Large heterogeneity across forecasters

� Informativeness of both individual and common signals about macro

outcomes increase when recession probability is high

- Information acquisition appears to be counter-cyclical

� Characterized properties of extracted signals in alternative settings

� Allows for model dependent interpretations

� Method provides upper bound for importance of common signal
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Common signal, different models

In a rational expectations model, all agents have model consistent

expectations and hence share the same model.

If different agents use different models, agent j ’s posterior is given by

p(x | Ωj
t−1, st) =

pj(st | x)p(x | Ωj
t−1)

p(st | Ωj
t−1)

Proposition. With agent specific likelihood functions but a common

prior, the estimated common signal satisfies

p (ŝt | xn)
p (ŝt | xm)

=
1
J

∑J
j=1 pj(st | xn)

1
J

∑J
j=1 pj(st | xm)

for each pair n,m ∈ 1, 2, ...,N.
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Time varying informativeness of signals about GDP growth
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