### About me

- Name: Yizhou (Kyle) Kuang
- Subfields: partial identification, time series, Bayesian inference and information economics
- Committee: Francesca Molinari (chair), Yongmiao Hong, José Luis Montiel Olea and Kristoffer Nimark

Setup 00000

# Robust Bayesian Estimation and Inference for Dynamic Stochastic General Equilibrium Models

#### Yizhou Kuang<sup>†</sup>

<sup>†</sup>Department of Economics, Cornell University

Last updated: December 27th, 2022



## Motivation

#### DSGE models are widely used:

\* U.S. Fed, Bank of Canada, Sveriges Riksbank etc.

#### • Analysis of the models is challenging because of 'identification':

- \* DSGE models are micro-founded, rich with parameters.
- \* Multiple parameter combinations may yield same data generating process.
- \* Standard Bayesian methods can be sensitive to prior choices.

#### Motivation

A monetary policy model (Cochrane 2011, JPE). In its AR(1) form

$$\pi_t = \rho \pi_{t-1} + \frac{1}{\psi - \rho} \epsilon_t, \quad \psi > 1, |\rho| < 1, \epsilon_t \sim N(0, \sigma_\epsilon^2)$$

parameter vector ( $\psi$ ,  $\sigma_{\epsilon}$ ,  $\rho$ ), Taylor rule parameter  $\psi$ , monetary policy disturbance coefficient  $\rho$ , its standard error  $\sigma_{\epsilon}$ . Inflation rate  $\pi_t$  is observed.



### Motivation and Contributions

### **Research Question**

- Given a DSGE model and observed data.
  - \* Sensitivity analysis: How much can the results change as I change the prior?
  - \* Policy implications: Is there a way to provide the entire set of parameters of interest, robust of priors?
- Overview of the algorithm:
  - S.1 Run standard Bayesian estimation, get posterior draws of  $\theta$  from a given prior  $p(\theta)$ .
  - S.2\* Optimize over the observationally equivalent set of parameters of this draw, find the lower and upper bounds of parameters of interest.
  - S.3 Average the lower/upper bounds for means and quantiles.

Setup 00000

#### Preview of Results - Identification



<□> < @> < E> < E> EE< のへの</p>

6/15

-8 L 0

2 4 6

Setup 00000

#### Preview of Results - Inference



8

10

12 14

Identified set of IR<sub>2</sub> Range of Posterior Mean IR

16 18 20

Setup 00000

#### Preview of Results - Inference



・ロ・・日・・日・・日・・日・・○への

## Literature and Contributions

- Identification in DSGE models: Canova and Sala (2009), Iskrev (2010), Komunjer and Ng (2011),Qu and Tkachenko (2012), Qu and Tkachenko (2017), Kociecki and Kolasa (2018), Kociecki and Kolasa (2021)
- **Robust Bayesian analysis**: Berger et al. (1994), Berger, Insua, and Ruggeri (2000), Gustafson (2009), Giacomini and Kitagawa (2021), Ke, Montiel Olea, and Nesbit (2022), Giacomini, Kitagawa, and Read (2022)

#### • My contribution:

- A robust Bayesian algorithm for DSGE models that is easy to implement and has a strong theoretical foundation.
- I work on "global" identification rather than identification at certain point (KK21).
- I study DSGE model, which has further complications (different with GK21).

### **Model Assumptions**

### Assumption (1)

Linearized DSGE model with Gaussian shocks.

### Assumption (2)

Solution to the LREM is unique, i.e. no indeterminacy.

#### Assumption (3)

Deep parameters enter LREM in an algebraic expression way.

• e.g. NKPC in Gali (2015): 
$$\pi_t = \beta E_t \{\pi_{t+1}\} + \lambda \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha}\right) \tilde{y}_t$$

### Definitions

### Definition (OE)

Parameter  $\bar{\theta}$  is observationally equivalent to  $\theta$  if they have the same likelihood  $p(y \mid \theta)$  for all data realization *y*.

A property independent of data

### **Definition (Identification)**

 $\boldsymbol{\theta}$  is identified if it has no observationally equivalent parameters.

Define the equivalence mapping K : Θ → 2<sup>Θ</sup>, that is, p(y | θ) = p(y | θ̄) for all y, if and only if K(θ) = K(θ̄).

### Definition (Reduced-form)

A continuously differentiable function  $\phi(\theta) \in \mathbb{R}^n$  is called a reduced-form parameter if it is identified.

### Example: Cochrane Model

Consider the full model

$$\begin{aligned} x_t &= \rho x_{t-1} + \epsilon_t, \quad |\rho| < 1, \epsilon_t \sim N(0, \sigma_\epsilon) \\ i_t &= r + E_t \pi_{t+1} \\ i_t &= r + \psi \pi_t + x_t, \quad \psi > 1 \end{aligned}$$

Deep parameters are  $\theta = (\rho, \psi, \sigma_{\epsilon})$ . The solution is equivalent to a AR(1) setting

$$\pi_t = \rho \pi_{t-1} + \frac{1}{\psi - \rho} \epsilon_t, \quad \epsilon_t \sim N(0, \sigma_\epsilon^2)$$

with reduced form parameters  $\phi = (\rho, \frac{\sigma_{\epsilon}}{\psi - \rho})$ ,  $(\psi, \sigma_{\epsilon})$  not jointly identifiable. The impulse response function is also not identified.

## **Theoretical Results**

#### Brief

Under certain regularity conditions,

1. Theorem 1 (Sensitivity): The estimated set from the algorithm using a prior, characterizes the set of posterior means from the same class of priors, s.t.

$$\pi_{\theta} \in \Pi_{\theta}(\pi_{\phi}) := \{\pi_{\theta}(\phi(\theta) \in A) = \pi_{\phi}(A), \text{ for all } A \in \mathcal{A}\}$$

2. Theorem 2 (Consistency): The estimated set from the algorithm, converge asymptotically to the 'true' identified set.

### Discussion

In this paper, I attack the following problems:

- Estimation results of set-identified DSGE models are sensitive to choice of priors (Identification)
  - \* Pick any 'reasonable' prior, the algorithm is able to give results from other priors with the same predictive distribution
  - \* I also prove theoretically the validity of this method.
- Researchers are silent about non-identified DSGE models (Inference)
  - \* The complete identified set of parameters is given.
- Thank you!

### **Prior Sensitivity**



## **Prior Sensitivity**



Figure: Cochrane model prior/posterior distribution with uniform priors

- The posterior of  $\sigma_{\epsilon}$  and  $\psi$  are extremely informative even if only  $\frac{\sigma_{\epsilon}}{\psi 0.8}$  is identified.
- Reason? Joint likelihood density more concentrated on areas with higher values of ψ and σ<sub>ε</sub>.

